New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows.
نویسندگان
چکیده
In this paper, new finite difference methods based on the augmented immersed interface method (IIM) are proposed for simulating an inextensible moving interface in an incompressible two-dimensional flow. The mathematical models arise from studying the deformation of red blood cells in mathematical biology. The governing equations are incompressible Stokes or Navier-Stokes equations with an unknown surface tension, which should be determined in such a way that the surface divergence of the velocity is zero along the interface. Thus, the area enclosed by the interface and the total length of the interface should be conserved during the evolution process. Because of the nonlinear and coupling nature of the problem, direct discretization by applying the immersed boundary or immersed interface method yields complex nonlinear systems to be solved. In our new methods, we treat the unknown surface tension as an augmented variable so that the augmented IIM can be applied. Since finding the unknown surface tension is essentially an inverse problem that is sensitive to perturbations, our regularization strategy is to introduce a controlled tangential force along the interface, which leads to a least squares problem. For Stokes equations, the forward solver at one time level involves solving three Poisson equations with an interface. For Navier-Stokes equations, we propose a modified projection method that can enforce the pressure jump condition corresponding directly to the unknown surface tension. Several numerical experiments show good agreement with other results in the literature and reveal some interesting phenomena.
منابع مشابه
A semi-implicit augmented IIM for Navier-Stokes equations with open and traction boundary conditions
In this paper, a new Navier-Stokes solver based on a finite difference approximation is proposed to solve incompressible flows on irregular domains with open and traction boundary conditions, which can be applied to simulations of fluid structure interaction, implicit solvent model for biomolecular applications and other free boundary or interface problems. For this type of problem, the project...
متن کاملروش بالادست چندبعدی براساس مشخصهها برای تحلیل جریان تراکم ناپذیر داخل حفره
In this research, a new multidimensional characteristic based upwind scheme for the solution of incompressible Navier-Stokes equations is presented. The incompressible flow equations have been coupled each other by the aid of artificial compressibility method. Unlike to the traditional characteristic based (CB) schemes, the present scheme is genuinely multidimensional in that the local charact...
متن کاملExternal and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method
The lattice Boltzmann method (LBM) has recently become an alternative and promising computational fluid dynamics approach for simulating complex fluid flows. Despite its enormous success in many practical applications, the standard LBM is restricted to the lattice uniformity in the physical space. This is the main drawback of the standard LBM for flow problems with complex geometry. Several app...
متن کاملNumerical Analysis and Scientific Computing Preprint Seria An octree-based solver for the incompressible Navier-Stokes equations with enhanced stability and low dissipation
The paper introduces a finite difference solver for the unsteady incompressible Navier-Stokes equations based on adaptive cartesian octree grids. The method extends a stable staggered grid finite difference scheme to the graded octree meshes. It is found that a straightforward extension is prone to produce spurious oscillatory velocity modes on the fine-to-coarse grids interfaces. A local linea...
متن کاملAn octree-based solver for the incompressible Navier-Stokes equations with enhanced stability and low dissipation
The paper introduces a finite difference solver for the unsteady incompressible Navier-Stokes equations based on adaptive cartesian octree grids. The method extends a stable staggered grid finite difference scheme to the graded octree meshes. It is found that a straightforward extension is prone to produce spurious oscillatory velocity modes on the fine-to-coarse grids interfaces. A local linea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- East Asian journal on applied mathematics
دوره 1 2 شماره
صفحات -
تاریخ انتشار 2011